domingo, 10 de enero de 2010

PUERTOS.

PUERTOS

USB: El Universal Serial Bus (bus universal en serie) o Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a un ordenador. Fue creado en 1996 por siete empresas (que actualmente forman el consejo directivo): IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.



ETHERNET : Tarjeta de red alambrica. Tambien llamado RJ45.  
Los conectores del RJ45 de un sistema están diseñados para conectar un cable UTP Unshielded Twisted Pair, par Trenzado sin Blindaje para red Ethernet equipado con enchufes convencionales compatibles con el estándar RJ45. Se coloca, presionando un extremo del cable UTP dentro del conector NIC hasta que el enchufe se asiente en su lugar. Luego se conecta el otro extremo del cable a una placa de pared con enchufe RJ45 o a un puerto RJ45 en un concentrador o central UTP, dependiendo de la configuración de su red.


PS/2: El conector PS/2 o puerto PS/2 toma su nombre de la serie de ordenadores IBM Personal System/2 que es creada por IBM en 1987, y empleada para conectar teclados y ratones. Muchos de los adelantos presentados fueron inmediatamente adoptados por el mercado del PC, siendo este conector uno de los primeros.
La comunicación en ambos casos es serial (bidireccional en el caso del teclado), y controlada por microcontroladores situados en la placa madre.
El RJ-11 es un conector usado mayoritariamente para enlazar redes de telefonía. Es de medidas reducidas y tiene cuatro contactos como para soportar 4 vias de 2 cables. Es el conector más difundido globalmente para la conexión de aparatos telefónicos convencionales, donde se suelen utilizar generalmente sólo los dos hilos centrales para una línea simple o par telefónico. Y se utilizan los cuatro hilos solo para aparatos de telefonia especiales que usen doble línea o los dos pares telefonicos. Una vez crimpado al cable, resulta casi imposible desarmar el RJ-11 sin provocar su inutilización.

viernes, 8 de enero de 2010

RANURAS PCI Y AGP

RANURAS PCI:
Una ranura de expansión (también llamada slot de expansión) es un elemento de la placa base de un ordenador que permite conectar a ésta una tarjeta adicional o de expansión, la cual suele realizar funciones de control de dispositivos periféricos adicionales, tales como monitores, impresoras o unidades de disco. En las tarjetas madre del tipo LPX las ranuras de expansión no se encuentran sobre la placa sino en un conector especial denominado riser card.

Tipos de ranuras

RANURA  XT

Es una de los ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernos (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento necesita ser revisados antes.

RANURA ISA

Tres ranuras ISA.
La ranura ISA es un ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.

RANURA VESA

En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 32 bits y con una frecuencia que varia desde 33 a 40 megahercios. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 0,9 de ancho (ISA) y 0,8 de ancho (extensión).


RANURAS AGP

Accelerated Graphics Port o AGP  puerto de gráficos acelerado es un puerto puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios, desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.
El puerto AGP es de 32 bits como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria de acceso aleatorio (RAM). Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del bus es de 66 MHz.

jueves, 7 de enero de 2010

FUNCIONAMIENTO MOUSE, TECLADO, MICROFONOS.. ETC

MOUSE:
Su funcionamiento principal depende de la tecnología que utilice para capturar el movimiento al ser desplazado sobre una superficie plana o alfombrilla de ratón especial para ratón, y transmitir esta información para mover una flecha o puntero sobre el monitor de la computadora. Dependiendo de las tecnologías empleadas en el sensor del movimiento o por su mecanismo y del método de comunicación entre éste y la computadora, existen multitud de tipos o familias.
El objetivo principal o más habitual es seleccionar distintas opciones que pueden aparecer en la pantalla, con uno o dos clic, pulsaciones, en algún botón o botones. Para su manejo el usuario debe acostumbrarse tanto a desplazar el puntero como a pulsar con uno o dos clics para la mayoría de las tareas.
Con el avance de las nuevas computadoras, el ratón se ha convertido en un dispositivo esencial a la hora de jugar, destacando no solo para seleccionar y accionar objetos en pantalla en juegos estratégicos, sino para cambiar la dirección de la cámara o la dirección de un personaje en juegos de primera o tercera persona. Comúnmente en la mayoría de estos juegos, los botones del ratón se utilizan para accionar las armas u objetos seleccionados y la rueda del ratón sirve para recorrer los objetos o armas de nuestro inventario.
Archivo:Mouse mechanism diagram.svg

TECLADO:
Básicamente el teclado de un ordenador se comporta como una máquina de escribir. Son muchas las teclas cuya función es la misma que en las máquinas de escribir, como la tecla 4 (Shift o Mayúsculas). Sin embargo, hay un buen número de teclas que tienen funciones propias sólo de ordenadores. Por otro lado, ciertas teclas sólo funcionan cuando se presionan simultaneamente con otras (combinación de teclas). Por ejemplo, la tecla 4 (Shift o Mayúsculas) se mantiene presionada para pulsar otra, como en la máquinas de escribir. Cada aplicación puede asociar determinadas combinaciones con funciones concretas de esa aplicación, aunque hay ciertas combinaciones de teclas que prácticamente son comunes a casi todas las aplicaciones cuyo uso es muy frecuentes y conocido: combinaciones usuales de teclas. También hay que tener en cuenta que se pueden combinar ciertas teclas con acciones de ratón para realizar acciones muy concretas. Por ejemplo, si se mantiene presionada la tecla 5 (Ctrl) y se realiza doble clic sobre una palabra, ésta queda seleccionada. Otras teclas funcionan como conmutadores, es decir, cuando se pulsa se activa y si se vuelve a pulsar se desactiva. Por ejemplo, la tecla 3 (Bloq Mayús) se activa para obtener todas mayúsculas y se desactiva para obtener minúsculas. Otras son propias del idioma como la Ñ y los acentos. En este artículo exponemos algunas nociones sobre teclados para el usuario que se enfrenta por primera vez al ordenador.



LOS MICROFONOS: Un micrófono es un transductor electroacústico que convierte la energía acústica (vibraciones sonoras: oscilaciones en la presión del aire) en energía eléctrica (variaciones de voltaje).
• Un altavoz también es un transductor electroacústico, pero sigue el camino contrario. Un altavoz transforma la corriente eléctrica en vibraciones sonoras.
La presión sonora o acústica es producto de la propia propagación del sonido. La energía provocada por las ondas sonoras generan un movimiento ondulatorio de las partículas del aire, provocando la variación alterna en la presión estática del aire (pequeñas variaciones en la presión atmosférica
Un altavoz (también conocido como parlante en América del Sur, Costa Rica, El Salvador y Nicaragua)1 es un transductor electroacústico utilizado para la reproducción de sonido. Uno o varios altavoces pueden formar una pantalla acústica.
En la transducción sigue un doble procedimiento: eléctrico-mecánico-acústico. En la primera etapa convierte las ondas eléctricas en energía mecánica, y en la segunda convierte la energía mecánica en energía acústica. Es por tanto la puerta por donde sale el sonido al exterior desde los aparatos que posibilitaron su amplificación, su transmisión por medios telefónicos o radioeléctricos, o su tratamiento.



CAMARA DE VIDEO: Primero, la luz que proviene de la óptica es descompuesta al pasar por un prisma de espejos dicróicos que descomponen la luz en las tres componentes básicas que se utilizan en televisión: el rojo (R o red), el verde (G o green) y el azul (B o blue). Justo en la otra cara de cada lado del prisma están los captadores, actualmente dispositivos CCDs y anteriormente tubos de cámara. El sistema óptico está ajustado para que en el target de cada captador se reconstruya la imagen nítidamente. Esta imagen es leída por los CCDs y su sistema de muestreo y conducida a los circuitos preamplificadores.
Los circuitos de muestreo y lectura de los CCD deben estar sincronizados con la señal de referencia de la estación. Para ello, todos los generadores de pulsos se enclavan con las señales procedentes del sistema de sincronismo de la cámara, que recibe la señal de genlock, normalmente negro de color, desde el sistema en el que se está trabajando. O bien, se trabaja sin referencia exterior, como suele hacerse al utilizar cámaras de ENG.
Ésta imagen leída por los CCD y su sistema de muestreo es conducida luego a los circuitos preamplificadores. En los preamplificadores se genera e inserta, cuando así se quiere, la señal de prueba llamada pulso de calibración, comúnmente llamada cal, la cual recorrerá toda la electrónica de la cámara y servirá para realizar un rápido diagnóstico y ajuste de la misma. De los preamplificadores las señales se enrrutan a los procesadores, donde se realizaran las correcciones de gamma, detalle, masking, pedestal, flare, ganancias, clipeos y limitadores.

ESCANER: El funcionamiento de un escáneres similar al de una fotocopiadora. Se coloca una hoja de papel que contiene una imagen sobre una superficie de cristal transparente, bajo el cristal existe una lente especial que realiza un barrido de la imagen existente en el papel; al realizar el barrido, la información existente en la hoja de papel es convertida en una sucesión de información en forma de unos y ceros que se introducen en la computadora.
Para mejorar el funcionamiento del sistema informático cuando se están registrando textos, los escáneres se asocian a un tipo de software especialmente diseñado para el manejo de este tipo de información en código binario llamados OCR (Optical Character Recognition o reconocimiento óptico de caracteres), que permiten reconocer e interpretar los caracteres detectados por el escáner en forma de una matriz de puntos e identificar y determinar qué caracteres son los que el subsistema está leyendo.

miércoles, 6 de enero de 2010

MEMORIA FLASH Y MEMORIA CACHE.

MEMORIA FLASH
Es una tecnología de almacenamiento derivada de la memoria EEPROM que permite la lecto-escritura de múltiples posiciones de memoria en la misma operación. Gracias a ello, la tecnología flash, siempre mediante impulsos eléctricos, permite velocidades de funcionamiento muy superiores frente a la tecnología EEPROM primigenia, que sólo permitía actuar sobre una única celda de memoria en cada operación de programación. Se trata de la tecnología empleada en los dispositivos pendrive.
Flash, como tipo de EEPROM que es, contiene una matriz de celdas con un transistor evolucionado con dos puertas en cada intersección. Tradicionalmente sólo almacenan un bit de información. Las nuevas memorias flash, llamadas también dispositivos de celdas multi-nivel, pueden almacenar más de un bit por celda variando el número de electrones que almacenan.
Estas memorias están basadas en el transistor FAMOS (Floating Gate Avalanche-Injection Metal Oxide Semiconductor) que es, esencialmente, un transistor NMOS con un conductor (basado en un óxido metálico) adicional localizado o entre la puerta de control (CG – Control Gate) y los terminales fuente/drenador contenidos en otra puerta (FG – Floating Gate) o alrededor de la FG conteniendo los electrones que almacenan la información.

MEMORIA CACHE: es un conjunto de datos duplicados de otros originales, con la propiedad de que los datos originales son costosos de acceder, normalmente en tiempo, respecto a la copia en la caché. Cuando se accede por primera vez a un dato, se hace una copia en el caché; los accesos siguientes se realizan a dicha copia, haciendo que el tiempo de acceso medio al dato sea menor.
Archivo:Caché.svg
Composición interna
La memoria cache está estructurada, una cache L2 de 512 KiB se distribuye en 16.384 filas y 63 columnas llamado Tag RAM, que indica a qué porción de la RAM se halla asociada cada línea de cache, es decir, traduce una dirección de RAM en una línea de cache concreta.

martes, 5 de enero de 2010

MEMORIA LIFO Y FIFO

MEMORIA FIFO: First In, First Out (primero en entrar, primero en salir), es un concepto utilizado en estructuras de datos, contabilidad de costes y teoría de colas. Tiene un sinónimo, FCFS, acrónimo inglés de First Come First Served (primero en llegar, primero en ser servido).
Guarda analogía con las personas que esperan en una cola y van siendo atendidas en el orden en que llegaron, es decir, que la primera persona que entra es la primera persona que sale.
FIFO se utiliza en estructuras de datos para implementar colas. La implementación puede efectuarse con ayuda de arrays o vectores, o bien mediante el uso de punteros y asignación dinámica de memoria.
Si se implementa mediante vectores el número máximo de elementos que puede almacenar está limitado al que se haya establecido en el código del programa antes de la compilación (cola estática) o durante su ejecución (cola pseudoestática ó dinámica).

MEMORIA LIFO: (Last in-first out), la última información introducida en la memoria es la primera en extraerse, es lo que se llama una pila o apilamiento.

Estas memorias especiales se crearon para librar a la CPU de gran parte de la labor de supervisión y control al realizar algunas operaciones del tipo de manipulación de datos memorizándolos y extrayéndolos a una secuencia establecida.Las memorias LIFO, no tienen porque ser memorias especiales ajenas a la memoria central del sistema, algunos micro procesadores (UP), suelen incorporar un registro denominado Stock Pointer (puntero de pila), que facilita al UP la posibilidad de construir pila (stock) sobre una zona de memoria RAM, el direccionamiento de la pila lo lleva a cabo el registro Stock Pointer actuando sobre la zona de memoria RAM destinada a tal efecto.

lunes, 4 de enero de 2010

TARJETAS GRAFICAS: NVidia y ATi

NVidia:  Desde 1999 hasta 2002, NVIDIA dominó el mercado de las tarjetas gráficas (comprando incluso la mayoría de bienes de 3dfx) con su gama GeForce. En ese período, las mejoras se orientaron hacia el campo de los algoritmos 3D y la velocidad de los procesadores gráficos. Sin embargo, las memorias también necesitaban mejorar su velocidad, por lo que se incorporaron las memorias DDR a las tarjetas gráficas. Las capacidades de memoria de vídeo en la época pasan de los 32 MB de GeForce, hasta los 64 y 128 MB de GeForce 4.
La mayoría de videoconsolas de sexta generación y sucesivos utilizan chips gráficos derivados de los más potentes aceleradores 3D de su momento. Los Apple Macintosh incorporan chips de NVIDIA y ATI desde el primer iMac, y los modelos PowerPC con bus PCI o AGP pueden usar tarjetas gráficas de PC con BIOS no dependientes de CPU.
En 2006 y en adelante, NVIDIA y ATI (ese mismo año comprada por AMD) se repartían el liderazgo del mercado con sus series de chips gráficos GeForce y Radeon, respectivamente.
ATi:
Expande tu campo de visión con la tecnología AMD Eyefinity de varias pantallas
Consigue gráficos ultra reales con la tecnología DirectX 11
Acelera las aplicaciones y dsifruta de un vídeo increíble con la tecnología EyeSpeed de AMD